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Abstract. A generalized classical virial equation is derived, superior to the equations 
already existing in three respects: 

(i) applicability to assemblies of fluctuating numbers of particles; 
(ii) applicability to assemblies subjected to net external action; 

(iii) applicability to any arbitrarily selected part of a larger assembly. 
It is found that the momentum in- and out-flux densities, caused,by particles crossing the 
limiting surfaces, contribute to the virial. The equation is applied to a homogeneous gas, 
and the ideal gas law is derived. Invariance criteria are studied, and translations and division 
into subsystems are discussed. Various internal and external contributions to the virial are 
discussed and compared for the new and the already existing vinal equations. 

1. Introduction 

The classical virial theorem (Clausius 1870) relates the average kinetic energy of a 
system of particles to the average action of forces on the same particles. In many cases it 
is possible to express the average action of forces in terms of the average potential 
energy, and in these cases the virial theorem governs the balance between kinetic and 
potential energy in the system. This important theorem has a direct analogy also in 
quantum mechanics (Fock 1930, Slater 1933). 

The applicability of this theorem, however, is subject to several important limita- 
tions. It is valid only for a fixed number of particles contained in a limited volume, and 
the long-time average of the total resultant external force must be zero. In statistical 
mechanics, a system of this type is represented by a petit ensemble. 

It is of great interest, however, to apply a similar theorem to systems of fluctuating 
numbers of particles (for instance electrons in a limited part of a crystal) or to systems 
subject to non-zero external action (for instance electrons in a field gradient). This type 
of system, where we have an exchange of particles through the surfaces of the observed 
volume, is represented by grand ensembles. 

In the present paper a classical virial theorem, applicable to grand ensembles, is 
derived. It is found that the momentum in- and out-flux densities, caused by particles 
crossing the limiting surfaces, contribute to the virial. This is by no means surprising, 
since an action of force is, by definition, nothing but a flux of momentum. The 
denomination of the statistical mechanics is accepted here. Thus, the ‘petit’ virial 
equation of Clausius is obtained as a special case of the ‘grand’ equat ion4erived in 
this work-when the surface flux is zero. 
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2. The classical virial equation for a grand ensemble 

The virial equation of Clausius can be expressed in the following manner: 

= 0, ( 2  r = l  ( 2 z + r i * K ) )  time average 

where the summation runs over a fixed number N of particles contained in a limited 
volume, and Ti, r, and F, are kinetic energy of, location of and force acting on the ith 
particle, respectively. For the corresponding quantum mechanical expression the 
condition of limited volume is replaced by a condition of vanishing wavefunctions at 
large distances. 

The petit virial equation (1) is only applicable to a petit ensemble. Here we shall 
derive the corresponding expression for a grand ensemble, essentially following 
Clausius' original method. 

We study the function 

~ ( 7 )  = 1 ri(7) pi(7); (ri E v>, ( 2 )  

where pi is the momentum of the ith particle located at r, at the time T. The summation 
is only extended over particles contained in the volume V at the time T. The function 
M ( T )  may be discontinuous, since the summation only runs over particles instantane- 
ously contained in V ;  particles may leave or enter the volume, thereby changing the 
number of terms in the sum. During the period tp we assume N(tp) discontinuities to 
occur at the points of time T,, (n = 1,2, . . . , N ) .  We define T~ = 0 and T N + ~  = t,. 

The time derivative of M, in the open time intervals T,, < T < T, ,+~  (n = 0, 1, . , , , N), 
is 

The time average of over all the open intervals T,, < T < T,,+~ is 

where T: = lim,,O(T,, + E )  and T ,  = lime+o(T,, - E ) ,  E > 0, and M(T:) and M ( T J  are the 
corresponding limits of M(T) .  

From equation (2) we conclude that M(t,) and M(0) must be finite quantities for 
every choice of t,. Thus we obtain 

1 N  
A, = lim A (t,) = lim - 1 (M(T,) -M(T,+)). 

rp-w f P - a  tp 1 

Here, and in the following discussion, the limit t,+m denotes a period of time, 
sufficiently long to make (M(tp)  - M(O))/t, negligible, but nevertheless short compared 
with a Poincart recurrence time. 

Let us adopt the following notation: the momentum vector of a particle leaving the 
volume V is $i and the corresponding notation for a particle entering V is Fi. We can 
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now express equation ( 5 )  as 

where J(t,) + K ( f , )  = N(t,) .  The contribution to A, from a small surface element AS at 
the point r is 

where AJ(rp, r )  and AK(t,, r )  are the total number of particles leaving and entering, 
respectively, the volume V through the surface element AS at r during the period t,. 

Let us define the mean flux of momentum (momentum/time) out through AS as 

1 *J 
fP+m t, 1 

Ag(r) = lim - Cj( r ) ,  

and the corresponding expression in through A S  as 

Now let us define the mean flux density of momentum (momentum/time and area) out 
of and into the volume as 

A*(r) @ ( r ) =  lim - 

AP(r) fi(r)= lim - 

AS+O A s  ’ 

AS+O AS ’ 

Substitution in equation (7)  gives 

AA, = r .  (p(r) - f i ( r ) )  AS. 

To get the total A,  we integrate over the surface S of the volume 

A, = 4 r .  (p’(r) - f i ( r ) )  dS. 
JS 

Since A, is a time average of h? we obtain from equation (3): 

which is the vinal equation for a grand ensemble. It is important to observe that the flux 
densities f i  and p‘ are not only functions of r but also depend on the orientation 
of the surface S at r. 

At this stage it is convenient to introduce some new notation. The virial sum of the 
petit virial equation is denoted 

Z p = C r i . F , .  (15) 

ZS = r .  ( f i ( r )  -@(r ) )  dS, (16) 

In the following, Zp is called the ‘petit virial’. The last term of equation (14) is denoted 
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and is in the following called ‘surface flux virial’. The sum Z of Zp and Zs is called the 
‘grand virial’: 

Z = Zp+Z,.  (17) 

Thus, we may write the grand virial equation as 

2 T + Z = O ,  (18) 

or 
2T+Zp+Zs=O,  

where T = 2T (r, E V) and time averages are tacitly implied. 

3. Application to homogeneous gas 

Consider a gas obeying the grand virial equation (14) and postulate a uniform and 
isotropic distribution of momentum. This implies that p’ = -6 and p’ 11 d S  for any choice 
of surface element dS, and that lp‘l is a constant for the whole of the particular specimen 
of gas. For the surface flux virial (16) the condition p’ = -6 yields 

2, = 2 $s r. $(r) dS. (20) 

-6 11 d S  yields 

ZS = -2 (f Ip‘(r)lr. dS. 
s 

Because 161 is a gas constant we have 

Zs=-2I/lf r.dS. 
S 

Gauss’ theorem yields 

The pressure is P = 2\61, which yields 

2, = -3PV. (24) 

This is the form of the surface flux virial Z,  for any gas of uniform and isotropic 
distribution of momentum. It is in fact valid for any volume of gas the momentum 
distribution of which is uniform and isotropic all over the surface, irrespective of the 
distribution in the rest of the volume. 

In the special case of an ideal gas, the particles interact only via collision forces. 
Since these forces are equal and opposite for every collision, equation (19) assumes the 
form 

2 T =  3PV. 
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But the average kinetic energy per particle in an ideal gas is $kT, where k is Boltzmann's 
constant and T is temperature. If f i i s  the average number of particles in V, we obtain 

f i T = P V  (26) 

which is the ideal gas law. The present derivation is based on the exchange of 
momentum through imaginary walls. In the case of a petit ensemble, however, the 
corresponding derivation is based on the action of forces exerted on the particles by 
impenetrable walls. 

Combining equations (24) and (25), we obtain 

Zs = -2T. (27) 

This result is of special interest for a Fermi gas such as electrons in a positive, 
neutralizing background. In a metal, for instance, Zs can be approximately calculated 
from the total kinetic energy T of the conduction electrons in the observed volume. 

4. Invariance criteria 

The virial equation (1) for a petit ensemble is not unconditionally invariant under 
transformations. Let us study orthogonal transformations which always can be divided 
into one parallel translation and one pure rotation of the coordinate system. 

Equation (1) is obviously invariant under pure rotation, since all T,  I f j / ,  IF,/ and 
angles between vectors are unchanged. It is not necessarily invariant under translation, 
however. Let us go from the r system to an r' system through a parallel translation x 

r = x + r ' .  (28) 
All 7; and F, are invariant under this translation, but the petit virial is transformed 
according to 

1 r , .  F, = x .  2 F, +E r : .  F,. (29) 

Thus, for an arbitrary translation x the petit virial (and equation (1)) is invariant if, and 
only if, the total force XF, vanishes. Since Newton's third law demands that all 
interaction between particles in the system balances, the total force on the system 
amounts to the total external force. 

Consequently we can state that the virial equation for a petit ensemble is invariant 
under orthogonal transformations if, and only if, the long-time average of the external 
force resultant vanishes. 

This is easily understood, since the virial equation is a relation between mean values. 
If the time average of the external force were not equal to zero, no time average of the 
kinetic energy could exist. 

For the grand virial equation (14) the situation is different, however. By the same 
argument as earlier wc realize that equation (14) is invariant under pure rotation. A 
translation x results in an extra term 

(x* c e)," 
in the petit virial, and an extra term 
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in the surface flux virial. Equation (14) therefore is invariant under an arbitrary 
translation x if, and only if, the condition 

is satisfied, It can be shown that this is always the case if a time average of the external 
force resultant exists. In exact analogy with the derivation of the surface flux virial in § 2 
(replace M by Zpi and M by ZF,) it is possible to show that equation (32) is then always 
satisfied. 

Consequently we can state that the mere existence of afinite long-time average value 
of external action is a necessary and sufficient condition for invariance of the grand virial 
equation under orthogonal transformations. 

This means that we can apply the grand virial equation to a system subjected to a 
non-vanishing external force resultant. In such a system some particles will suffer a net 
acceleration in their motion through the observed volume, and the total flux of 
momentum into the volume will not equal the total flux out of it. 

5. Translations and subsystems 

Assume that an assembly? of particles is divided into M subassemblies which may or 
may not overlap in space. Furthermore, assume that each subassembly has its own 
coordinate system (subsystem) which can be obtained from a principal system by a 
simple parallel translation xm 

ri = x m  + r m k ;  m = 1 , 2  , . . . ,  M, (33) 

where i and k refer to the numbering of particles in the principal system and the mth 
subsystem, respectively. The total instantaneous number of particles in the principal 
assembly is L, and the number in a subassembly is I,, i.e. 

M 
L = 1 1,. 

1 
(34) 

Let us adopt the notation 2, for the petit virial of the principal assembly and Zpm for the 
subassemblies 

L 
Zp= ri .Fi  

z=l  

1, 

ZPm = c rmk Fmk ; m = l , 2  , . . . ,  M. 
k = l  

The principal petit virial Z ,  then can be expressed as 

(35) 

(36) 

7 Up to now we have used the word ‘system’ in two senses: systems of particles and coordinate systems. To 
avoid misunderstandings, in the following the word ‘system’ always refers to coordinate systems while the 
word ‘assembly’ is used for collections of particles. 
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Introduce Fm = 2f;.=l Fmk, which is the total force acting on the mth subassembly and 
amounts to the total external force (exerted by other subassemblies, for instance). Thus 
we obtain 

M M 
zp= 1 x m . F m +  1 z p m .  

m = l  m = l  

It is now possible to divide an assembly with complicated symmetry properties into 
subassemblies, convenient for calculating the principal petit virial 2, from the sub- 
virials Zpm and the total external forces Fm acting on each subassembly. 

Similarly, the calculation of the surface flux virial Zs (equation (16)) may be 
simplified by a division into subassemblies. In this case, however, the subassemblies 
should not overlap in space, but rather constitute a non-overlapping partition of the 
entire volume of the principal assembly. 

If Zs denotes the surface flux vinal of the the entire assembly of the principal system, 
and Zsm is the notation for subassembly m in the subsystem, we have: 

m = l , 2  , . . . ,  M. (40) 

The translation r = x, + rm substituted into (39) yields 

= f x m  .& ~ ( r ) - g ( r ) ) d ~ +  2 f r m  *(fi(rm>-F(rm))dS* (41) 
m = l  m = l  S, 

To obtain the first equality we have utilized the fact that all contributions to Zs from 
interfaces between neighbouring subassemblies cancel (since F(r) in one subassembly 
must equal p’(r) in the neighbouring one)?. In the last term of the last equality we have 
utilized the fact that p’ and p‘ are invariants under translations. From equation (32) it is 
seen that the integral in the first part of the last term equals -(Fm)av = -(E;,= Fmk)av, i.e. 
the negative of the total external force on subassembly m. Thus we obtain (cf equation 
(38)) 

For a non-overlapping partition of the entire volume of the principal assembly, neither 
the principal petit virial Zp nor the principal surface flux vinal Zs can be divided into 
simple sums of subvirials (cf equations (38) and (42)). This, however, is possible for the 
grand virial 

M 

z=zp+z,= (Zpm+Zsm) (time averages tacitly implied). (43) 
m = l  

Consequently, for a volume partitioned in the above manner, it is possible to find the 

t Note that the directions of dS (positive or negative) must be the same in all subsystems as in the principal 
system. Thus, for an interface, dS is directed inwards for one subassembly if i t  is directed outwards for the 
neighbouring subassembly. 
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grand virial of the principal assembly simply by the summation of the grand virials of the 
subassemblies; irrespective of the choice of subsystems and of the external forces on the 
subassemblies. 

6. Internal and external G a l s  

In order to clarify the cause and origin of the different parts of the grand virial, it is 
useful to divide it into different parts: Z = 2, + Z,, where 2, is the ‘internal virial’ due to 
internal interactions and 2, is the ‘external virial’ caused by external influences. 2, can 
be further divided into the ‘constraint virial’ 2, due to external forces of constraint, and 
the surface flux virial Zs  caused by the exchange of momentum through the limiting 
surfaces. The relation between the different Z is given by 

Z P  

For electrostatic type of interaction we have 2, = U (internal potential energy). 

relationships of the type 
In the literature (Slater 1933, March 1958, Lowdin 1959, Ross 1969) virial 

(45) 

are currently encountered for electrostic interaction. E is the total energy T+ U (time 
averages are tacitly implied). These expressions, however, are derived for petit 
ensembles. Only in the special case of a gas of homogeneous and isotropic distribution 
(in space) of momentum are they applicable to grand ensembles. A non-vanishing 
space derivative of E in the right-hand side of equation (45) implies that the assembly is 
subjected to external constraint, the energy of which is not included in E = T+ U. In a 
homogeneous gas, for instance, -aE/aV is the wall pressure P. Thus, the petit virial of 
equation (45) is 

aE 
z p =  u + 3 v -  av 

where the first term is ZI and the second term is Zc. 
Imagine a homogeneous gas of limited volume V. For a petit ensemble (i.e. V is 

enclosed by walls) Zc f 0 and 2, = 0, but for a grand ensemble (no walls) Z ,  = 0 and 
Zs # 0. As discussed above, ZC(petit) = -3PV, which, according to equation (24), equals 
ZS(grand). This is the reason why equation (45) can be applied directly to a grand 
ensemble in a homogeneous gas. In the general case, however, both Zc and Z ,  are 
non-vanishing, and a grand virial equation which includes both types of virials must be 
used. 

7. summary 

The petit virial equation suffers from the restrictions that it can only be applied to an 
assembly of a fixed number of particles and subjected to no external net action. By 
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introduction of a surface flux virial these restrictions are removed in the grand virial 
equation. Furthermore, the grand virial equation is, contrary to the petit equation, 
applicable to any arbitrary chosen part of a larger assembly. 

As pointed out in 06, petit virial relationships are sometimes applied to grand 
ensembles. This is possible only in cases where the surface flux virial equals the 
constraint virial of the corresponding petit ensemble, as for instance in a gas of isotropic 
and homogeneous distribution of momentum. This fact, however, is rarely pointed out 
in the literature. 

Some quantum mechanical virial equations, resembling the classical grand virial 
equation derived in the present work, are found in the literature. These equations are 
either derived from the Schrodinger equation by means of Slater’s (1933) original 
method (Weislinger and Olivier 1974, Srebrenik and Bader 1974), or from the 
Heisenberg equation (McLellan 1974). In a subsequent publication, the present author 
derives a quantum grand virial equation by a similar method to that used in the present 
work. It is thereby possible to express the quantum surface flux virial in the same easily 
interpreted manner as the classical 2,. 

References 

Clausius R 1870 Ann. Phys., Lpz. 141 124 (1870 Phil. Mag. 40 122) 
Fock V 1930 2. Phys. 63 855 
Lowdin P-0  1959 J. Molec. Spectrosc. 3 46 
March N H 1958 Phys. Reu. 110 604 
McLellan A G 1974 Am. J. Phys. 42 239 
Ross M 1969 Phys. Rev. 179 612 
Slater J C 1933 J. G e m .  Phys. 1 687 
Srebrenik S and Bader R F W 1974 J. Chem. Phys. 61 2536 
Weislinger E and Olivier G 1974 Znr. J. Quantum G e m .  Symp. No. 8 389 


